Hyperbolic and Uniform Domains in Banach Spaces
نویسنده
چکیده
A domain G in a Banach space is said to be δ-hyperbolic if it is a Gromov δ-hyperbolic space in the quasihyperbolic metric. Then G has the Gromov boundary ∂∗G and the norm boundary ∂G. We show that the following properties are quantitatively equivalent: (1) G is C-uniform. (2) G is δ-hyperbolic and there is a natural bijective map G ∪ ∂∗G → G ∪ ∂G, which is η-quasimöbius rel ∂∗G. (3) G is δ-hyperbolic and there is a natural η-quasimöbius homeomorphism ∂∗G→ ∂G. In a euclidean space, this improves a result of Bonk-Heinonen-Koskela, whose estimates depend on dimension and on a base point. MSC Subject Classification: 30C65, 53C23.
منابع مشابه
On some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces
In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...
متن کاملComposition operators between growth spaces on circular and strictly convex domains in complex Banach spaces
Let $\Omega_X$ be a bounded, circular and strictly convex domain in a complex Banach space $X$, and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$. The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$ such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$ for some constant $C>0$...
متن کاملThe James and von Neumann-Jordan type constants and uniform normal structure in Banach spaces
Recently, Takahashi has introduced the James and von Neumann-Jordan type constants. In this paper, we present some sufficient conditions for uniform normal structure and therefore the fixed point property of a Banach space in terms of the James and von Neumann-Jordan type constants and the Ptolemy constant. Our main results of the paper significantly generalize and improve many known results in...
متن کاملUniform Boundedness Principle for operators on hypervector spaces
The aim of this paper is to prove the Uniform Boundedness Principle and Banach-Steinhaus Theorem for anti linear operators and hence strong linear operators on Banach hypervector spaces. Also we prove the continuity of the product operation in such spaces.
متن کاملNonexpansive Iterations in Uniformly Convex W -hyperbolic Spaces
We propose the class of uniformly convex W -hyperbolic spaces with monotone modulus of uniform convexity (UCW -hyperbolic spaces for short) as an appropriate setting for the study of nonexpansive iterations. UCW -hyperbolic spaces are a natural generalization both of uniformly convex normed spaces and CAT (0)-spaces. Furthermore, we apply proof mining techniques to get effective rates of asympt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005